
A dynamic approach to three-dimensional radiative transfer in
numerical weather prediction models: the dynamic TenStream
solver v1.0
Richard Maier1, Fabian Jakub1, Claudia Emde1,2, Mihail Manev1, Aiko Voigt3, and Bernhard Mayer1

1Meteorologisches Institut, Ludwig-Maximilians-Universität München, Munich, Germany
2Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
3Institut für Meteorologie und Geophysik, Universität Wien, Vienna, Austria

Correspondence: Richard Maier (richard.maier@physik.uni-muenchen.de)

Abstract. The increasing resolution of numerical weather prediction models makes three-dimensional (3D) radiative effects

more and more important. However, 3D radiative transfer solvers are still computationally expensive, largely preventing their

use in operational weather forecasting. To address this issue, Jakub and Mayer (2015) developed the TenStream solver. It

extends the well-established two-stream method to three dimensions by using ten instead of two streams to describe the trans-

port of radiative energy through Earth’s atmosphere. Building upon this method, this paper presents the dynamic TenStream5

solver, which provides a further acceleration of the original TenStream solver. Compared to traditional solvers, this speed-up is

achieved by utilizing two main concepts: First, radiation is not calculated from scratch every time the model is called. Instead,

a time-stepping scheme is introduced to update the radiative field based on the result from the previous radiation time step.

Secondly, the model is based on incomplete solves, performing just the first few steps of an iterative scheme towards conver-

gence every time it is called. At its core, the model thereby just uses the ingoing fluxes of a grid box to update its outgoing10

fluxes. Combined, these two approaches put radiative transfer much closer to the way advection in the dynamical core of an

NWP model is handled, as both use previously calculated results to update their variables and thereby just require access to

the neighboring values of an individual model grid box, facilitating model parallelization. To demonstrate the feasibility of this

new solver, we apply it to a precomputed shallow cumulus cloud time series and test its performance both in terms of speed and

accuracy. In terms of speed, our new solver is shown to be about three times slower than a traditional 1D δ-Eddington solver,15

but noticeably faster than currently available 3D solvers. To evaluate the accuracy of our new solver, we compare its results,

as well as calculations carried out by a 1D δ-Eddington solver and the original TenStream solver, to benchmark calculations

performed with the 3D Monte Carlo solver MYSTIC. We demonstrate that our new solver is able to calculate heating rates and

net surface irradiances very close to those obtained by the original TenStream solver, thus offering a noticeable improvement

compared to the 1D δ-Eddington results even when operated at lower calling frequencies. At these lower calling frequencies,20

the incomplete solves in the dynamic TenStream solver lead to the build-up of a bias with time, which becomes larger the

lower the calling frequency is. However, this increase in bias flattens out after a while and remains smaller than the heating

rate bias introduced by the 1D δ-Eddington solver at any point in time. Most importantly, our new solver is shown to produce

significantly better results when compared to 1D δ-Eddington solves carried out with a similar computational demand.
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1 Introduction25

Sources and sinks of radiative energy in the atmosphere are the main drivers of both weather and climate. They are quantified

by heating rates and calculated using radiative transfer models, which describe the transport of radiative energy through Earth’s

atmosphere, ideally allowing for full three-dimensional (3D) transport of energy. However, 3D radiative transfer solvers are

computationally expensive, largely preventing their use in operational weather forecasting. This is why numerical weather

prediction (NWP) models still use one-dimensional (1D) independent column approximations (ICA), such as the Monte Carlo30

Independent Column Approximation (McICA; Pincus et al. (2003)) currently employed at both DWD and ECMWF (DWD,

2021; Hogan and Bozzo, 2018). These models assume that radiative transport between grid boxes only takes place in the

vertical and neglect any horizontal transport of energy.

While these approximations worked reasonably well in the past given the computational power and model resolution at that

time, the increasing horizontal resolution of weather models makes 3D radiative effects more and more important (O’Hirok and35

Gautier, 2005). Especially in large eddy simulations (LES) with hectometer-scale resolutions, these effects have been shown

to affect both the organization and development of clouds. Klinger et al. (2017) for example showed that consideration of 3D

radiation in the thermal spectral range leads to systematically larger cooling and much stronger organizational effects than

simulations driven by 1D radiative transfer. In accordance with that, Jakub and Mayer (2017) demonstrated that 3D radiative

transfer leads to the formation of cloud streets that are to this extent not found in 1D simulations.40

To account for these increasingly important effects, a lot of effort in recent years was put into making 3D radiative transfer

models computationally more feasible. The Neighboring Column Approximation (NCA; Klinger and Mayer (2016, 2020))

for example provides a fast analytical method to calculate 3D thermal heating rates. To do so, it estimates cloud side effects

by taking just the direct neighbors of a specific grid box into account. The TenStream solver (Jakub and Mayer, 2015, 2016)

is another fast method capable of calculating 3D radiative fluxes and heating rates in both the solar and the thermal spectral45

range. It extends the well-established 1D two-stream formulation to ten streams to consider 3D radiative effects. Especially

designed for the resolutions of currently employed NWP models, the Speedy Algorithm for Radiative Transfer through Cloud

Sides (SPARTACUS; Schäfer et al. (2016); Hogan et al. (2016)) does not look at 3D radiative transport between individual

model grid columns, but estimates the 3D radiative effect on the subgrid scale by adding terms to the two-stream scheme that

represent the transport between cloudy and clear regions inside an individual model column. However, despite all these efforts,50

SPARTACUS for example is still 5.8 times slower than the McICA paramerization currently used at ECMWF (Hogan and

Bozzo, 2018), which prohibits the use of such 3D radiative transfer models in operational forecasting, especially given that

radiation is already called far less often than the dynamical core of NWP models due to its high computational burden.

To address this high computational cost of current 3D solvers, we present a new, "dynamic" 3D radiative transfer model that

is based on the TenStream solver. This new, fully three-dimensional solver accelerates 3D radiative transfer towards the speed55

of currently employed 1D solvers by utilizing two main concepts. First, the model does not calculate radiation from scratch

every time it is called, but treats radiation more like dynamics by using a time-stepping scheme to update the radiative field
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based on the result from the previous time step. Secondly, the model is based on incomplete solves, performing just the first

few steps towards convergence every time it is called.

A detailed description of this method can be found in Sect. 2 of this paper. In Sect. 3, we then introduce a precomputed LES60

shallow cumulus cloud time series and further methodology to assess the quality of the new solver both in terms of speed and

accuracy, also considering different calling frequencies. To this end, we compare it to both a traditional 1D δ-Eddington solver,

the original TenStream solver as well as a benchmark simulation provided by the 3D Monte Carlo solver MYSTIC (Mayer,

2009). The results of this evaluation are presented in Sect. 4. The paper ends with a summary and outlook given in Sect. 5.

2 Towards dynamic treatment of radiation65

Our goal is to create a 3D radiative transfer solver that calculates radiative fluxes and heating rates at a significantly faster

speed than other 3D solvers, while also delivering a noticeable improvement in terms of accuracy over currently employed 1D

radiation schemes. Here, we explain the foundation and functionality of our newly developed dynamic TenStream solver, that

aims to achieve these targets using a time-stepping scheme and incomplete solves.

2.1 The original TenStream solver70

We build upon the TenStream solver (Jakub and Mayer, 2015), which extends the established two-stream formulation to three

dimensions. Figure 1 shows the definition of its streams, i.e. radiative fluxes (in units of W), for a single rectangular grid box,

with the indices (i, j,k) indicating the position of the box in a Cartesian grid of size Nx ·Ny ·Nz .

Figure 1. Schematic illustration of all fluxes entering and exiting a rectangular grid box (i, j,k) in the TenStream solver and their respective

indices. Diffuse fluxes are shown in blue, while fluxes of direct radiation are displayed in red. Fluxes entering the grid box are shown in a

darker tone than the ones exiting. The two pairs of diffuse fluxes on each of the sideward oriented faces of the cuboid point into and out of

the upper and lower hemispheres, respectively. Fluxes on the sides of the cuboid facing to the north and west are not visible.
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Ten streams (Φ0, Φ1, ..., Φ9; depicted in blue) are used to describe the three-dimensional transport of diffuse radiation.

As in the two-stream formulation, two of them (Φ0 (upward) and Φ1 (downward)) characterize the transport in the vertical,75

whereas four additional streams are introduced to describe the transport in each of the two additional horizontal dimensions.

The transport of direct radiation, i.e. radiation originating from the Sun that has not yet interacted with the atmosphere, is

treated separately using the three additional streams S0, S1 and S2, one for each dimension (shown in red in Fig. 1). Using

these streams, the radiative transport through a single grid box (i, j,k) in the case of Sun shining from the south-west can be

expressed by the following matrix equation:80



Φ0, i , j , k+1

Φ1, i , j , k

...

Φ9, i , j+1, k

S0, i , j , k

S1, i+1, j , k

S2, i , j+1, k


︸ ︷︷ ︸

=Φout,i,j,k

=



a00,i,j,k . . . a09,i,j,k b00,i,j,k b01,i,j,k b02,i,j,k

a10,i,j,k . . . a19,i,j,k b10,i,j,k b11,i,j,k b12,i,j,k

...
...

...
...

...

a90,i,j,k . . . a99,i,j,k b90,i,j,k b91,i,j,k b92,i,j,k

0 . . . 0 c00,i,j,k c01,i,j,k c02,i,j,k

0 . . . 0 c10,i,j,k c11,i,j,k c12,i,j,k

0 . . . 0 c20,i,j,k c12,i,j,k c22,i,j,k


︸ ︷︷ ︸

=T i,j,k

·



Φ0, i , j , k

Φ1, i , j , k+1

...

Φ9, i , j , k

S0, i , j , k+1

S1, i , j , k

S2, i , j , k


︸ ︷︷ ︸

=Φin,i,j,k

+



e0,i,j,k ·Beff,0,i,j,k

e1,i,j,k ·Beff,1,i,j,k

...

e9,i,j,k ·Beff,9,i,j,k

0

0

0


︸ ︷︷ ︸

=Bi,j,k

(1)

In there,

– the vector Φin,i,j,k consists of all the radiative fluxes entering grid box (i, j,k). For reasons of clarity, will use the expres-

sion Φin,m,i,j,k to address an individual entry m of this vector, implying that for example Φin,10,i,j,k equals S0,i,j,k+1 in

case of Sun shining from the south-west.85

– the matrix T i,j,k describes the scattering and absorption of the ingoing radiation Φin,i,j,k on its way through the grid box,

with a00,i,j,k for example quantifying the fraction of the upward flux entering the grid box at the bottom (Φ0,i,j,k) that

exits the box in the same direction through the top (Φ0,i,j,k+1). While the "a"-coefficients describe the transmittance of

diffuse radiation, the "b"-coefficients quantify the fraction of direct radiation that gets scattered, thus providing a source

term for the ten diffuse streams. The "c"-coefficients describe the amount of direct radiation that is transmitted through90

the grid box without interacting with the medium. All of these transport coefficients depend on the optical properties

(optical thickness, single scattering albedo, asymmetry parameter, grid box aspect ratio and angle of solar incidence)

of the particular grid box. They are precomputed using Monte Carlo methods and stored in look-up tables (Jakub and

Mayer, 2015). We will use the expression tmn,i,j,k to refer to the entry in row m and column n of the full matrix T i,j,k.

– the vector Bi,j,k quantifies the amount of thermal radiation that is emitted into the direction of every one of the ten diffuse95

streams. Its entries Bm,i,j,k are calculated by multiplying the black body radiation that is emitted into the corresponding

direction (Beff,m,i,j,k) by the emissivity of the grid box in that direction. According to Kirchhoff’s law, this emissivity

into a certain direction is the same as the absorptivity of radiation coming from that direction, which in turn is one minus
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the transmittance in that direction, i.e. e.g.

e0,i,j,k = 1−
9∑

n=0

an1,i,j,k100

– the vector Φout,i,j,k consists of all radiative fluxes exiting the grid box (i, j,k). For every stream, it contains all the

radiative energy that has not interacted with the grid box on its way through, plus, in case of the diffuse streams, the

radiative energy that has been scattered and emitted into that direction along that way. Similar to the ingoing flux vector,

we use the expression Φout,m,i,j,k to refer to an entry m of the full vector Φout,i,j,k.

The combined equations for all the Nx ·Ny ·Nz grid boxes make up a large system of coupled linear equations that must be105

provided with boundary conditions at the edges of the domain. At the top and bottom, these are determined by the incoming

solar radiation on one side and by ground reflection and emission on the other:

S0,i,j,Nz+1 = E0 · cosθinc ·∆x ·∆y (incoming solar radiation at the top)

Φ0,i,j,0 =Ag · (Φ1,i,j,0 +S0,i,j,0) + (1−Ag) ·π ·Bg ·∆x ·∆y (reflection and emission at the ground)

In here, E0 denotes the extraterrestrial solar irradiance (in units of W m−2), θinc the solar zenith angle, Ag the ground albedo,110

Bg the emitted black body radiance of the ground (in units of W m−2 sr−1) and ∆x and ∆y the horizontal grid box lengths

(in units of m). The boundary conditions employed at the sides of the domain depend on the model configuration and can

either be cyclic or provided by neighboring subdomains. The resulting system of linear equations can then be solved by various

numerical methods delivered by the parallel linear algebra library PETSc (Balay et al., 2023) in the original TenStream solver.

2.2 Introducing time-stepping and incomplete solves: the dynamic TenStream solver115

However, solving this large system of linear equations is a difficult task, especially when it needs to be parallelized for large

NWP simulations. The main reason behind this difficulty is the fundamentally different approach on how radiation and dynam-

ics are treated in numerical models. On the one hand, solving the equations of motion that govern advection in the dynamical

core of an NWP model represents an initial value problem that has no known analytical solution. Hence, these equations are

discretized in space and time and solved by a time-stepping scheme, where model variables are gradually propagated forward in120

time by applying the discretized equations onto values obtained at previous time steps (Holton and Hakim, 2012). An individual

grid box thereby only needs information about itself and its nearby surroundings, facilitating model parallelization. Radiative

transfer on the other hand is treated as a boundary value problem, where information is not gradually propagated through the

domain, but rather spread instantaneously at the speed of light, involving the entire model grid. Three-dimensional radiative

transfer can thus easily break model parallelization, as a radiative flux at any position in the domain can theoretically depend125

on all other radiative fluxes throughout the domain. This can be seen by looking at the coupled structure of the equations in the

original TenStream solver in Eq. (1).
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2.2.1 The Gauß-Seidel method

We tackle this problem by treating radiation similar to initial value problems. To this end, we build upon the TenStream linear

equation system revisited in Sect. 2.1 and examine its solution with the Gauß-Seidel method, as it is described in e.g. Wendland130

(2017). According to this iterative method, a system of linear equations must be transformed in a way that there is one equation

solved for every one of the unknown variables. This form is given by the equations in Eq. (1) with the unknown variables being

all the radiative fluxes in the entire domain. Providing a first guess for all of these variables, one then iterates through all these

equations and sequentially updates all the radiative fluxes by applying either the first guess, or, if already available, the updated

values to the corresponding variables on the right-hand side of the equations. Applied to the TenStream equations, this means135

that one gradually iterates through all the grid boxes of the entire domain. For every one of the grid boxes, one then calculates

updated values for the outgoing fluxes Φ(l+1)
out,m,i,j,k on the left side of Eq. (1) by applying either already updated ingoing fluxes

Φ(l+1)
in,m,i,j,k, or, if not yet available, their values Φ(l)

in,m,i,j,k from the previous Gauß-Seidel iteration step to the variables on the

right side of the equations:

Φ(l+1)
out,m,i,j,k =

9+3∑

n=0

tmn,i,j,k ·





Φ(l+1)
in,n,i,j,k if Φ(l+1)

in,n,i,j,k has already been calculated

Φ(l)
in,n,i,j,k otherwise

(2)140

In here, the indices m and n denote an individual entry of the outgoing flux vector Φout,i,j,k or the ingoing flux vector Φin,i,j,k,

whereas l quantifies the Gauß-Seidel iteration step and tmn,i,j,k refers to the corresponding entry in matrix T i,j,k in Eq. (1).

Completing this procedure for all the grid boxes and boundary conditions accomplishes one Gauß-Seidel iteration. One can

then repeat this procedure with the updated radiative fluxes serving as the new first guess, until the values eventually converge

to the solution of the linear equation system.145

2.2.2 Dynamic treatment of radiation

We use the Gauß-Seidel method to significantly speed up 3D radiative transfer calculations by utilizing two main concepts: a

time-stepping scheme and incomplete solves.

To introduce the time-stepping scheme, we make use of the fact that the Gauß-Seidel algorithm requires us to choose an

initial guess from where to start. So instead of solving the whole TenStream linear equation system from scratch every time,150

we use the result obtained at the previous call of the radiation scheme as a starting point of the algorithm. Assuming that the

field of optical properties determining the radiative fluxes has not changed fundamentally between two calls of the radiation

scheme, this first guess should already be a good estimator of the final result. However, for the very first call of the radiation

scheme, we cannot use a previously calculated result. In order to choose a reasonable starting point of the algorithm for this

first call as well, though, we solve the TenStream linear equation system for a clear sky situation. Since this means there is no155

horizontal variability in the cloud field, we can perform this calculation for a single vertical column at a dramatically increased

speed compared to a calculation involving the entire model grid. We do not use a 1D solver for that, however, because we also

need to pass initial values to the sideward facing fluxes in the TenStream equation system. Assigned to the radiative fluxes of
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Figure 2. Schematic illustration of the dynamic treatment of radiation compared to the classic treatment. Instead of performing full 1D solves

from scratch every time the radiation scheme is called, we use the result obtained at the last call as a starting point of an incomplete 3D solve,

adjusting the previously calculated radiative fluxes towards the new full 3D solution.

all vertical columns in the entire domain, these values then provide a first guess for all the TenStream variables that can be

assumed to be much closer to the final result than starting with values of zero. This is the spin-up mentioned in Fig. 2.160

Based on the idea that the radiative field does not fundamentally change between two calls of the radiation scheme, we

furthermore just perform a limited number N of iterations of the Gauß-Seidel algorithm every time the radiation scheme is

called, essentially not letting it fully converge. Unless the radiative fluxes have changed dramatically compared to the last

calculation, adjusting the variables towards the new solution should already provide a good approximation of the full solution,

especially since it incorporates 3D effects, unlike the 1D independent column solutions used nowadays.165

The combination of these two efforts is visualized in Fig. 2. Instead of calculating a full 1D solution from scratch every

time radiation is called, our dynamic approach uses the previously obtained result as the starting point of a new incomplete 3D

solve. This treatment of radiation puts it much closer to the way initial value problems like advection in the dynamical core of

an NWP model are handled. Both use previously calculated results to update their variables. And looking at an individual grid

box, updating the outgoing fluxes by applying Eq. (2) just requires access to the fluxes entering that exact same grid box and170

thus just to neighboring values, just like in the discretized equations describing advection in the dynamical core of an NWP

model.

But even though the calculation of updated outgoing fluxes just requires access to fluxes entering the exact same grid box,

this update process can indeed involve more distant grid boxes, since their calculation uses ingoing fluxes calculated in the very

same Gauß-Seidel iteration wherever possible. And since these ingoing fluxes are outgoing fluxes of a neighboring grid box175

7

https://doi.org/10.5194/egusphere-2023-2129
Preprint. Discussion started: 13 October 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 3. Two-dimensional schematic illustration of the first four steps of a Gauß-Seidel iteration, showing the TenStream fluxes in case

of Sun shining from the west or left-hand side. As one sequentially iterates through the grid boxes, ingoing fluxes are used to update the

outgoing fluxes of the corresponding grid box (highlighted in grey). Grey arrows in contrast to black arrows indicate fluxes that have not yet

been updated in this Gauß-Seidel iteration, with the fluxes entering the domain at the borders being updated right from the beginning since

boundary conditions have been applied there before.

that may have also been calculated using already updated radiative fluxes, information can spread across the domain wherever

possible, involving e.g. entire subdomains in NWP models. This is visualized in Fig. 3, which shows the first few steps of a

Gauß-Seidel iteration in two dimensions only. Looking for example at the third step, outgoing fluxes of the upper-right grid box

(highlighted in grey) are updated using the corresponding ingoing fluxes. Thereby, the ingoing flux of direct radiation entering

the grid box on the left-hand side for example already contains radiative transfer through the two grid boxes on its left-hand180

side. This shows that the iteration direction through the grid boxes within a Gauß-Seidel iteration is crucial, as information can

spread much faster in the direction one iterates through the grid boxes. Since the Gauß-Seidel algorithm allows us to freely

choose the order in which to proceed through the system of linear equations, we can use this order to our advantage. First, we

use the fact that whereas diffuse radiation spreads into all directions simultaneously, direct radiation clearly propagates in the

direction of the Sun. Hence, for the solar spectral range, we first iterate through the grid boxes in the direction given by solar185

incidence in the horizontal and then iterate from top to bottom in the vertical, as it is indicated by the dashed brown arrow in

Fig. 3. In the thermal spectral range however, emitted radiation is larger in the lower part of the domain, since temperatures are

higher down there. Hence, we iterate from bottom to top in the vertical there. Independent of the spectral range we however still

need to consider that diffuse radiation spreads in all directions simultaneously, which we do not account for by using a fixed

iteration direction. Thus, we reverse this direction in every other Gauß-Seidel iteration to not favor propagation of information190

in one direction.

Combined, these efforts should allow us to very efficiently calculate radiative transfer in three dimensions: First, the time-

stepping scheme allows us to already start with a reliable first guess instead of calculating everything from scratch. Next, we

speed up the rate of convergence by choosing a proper order in which to proceed through the linear equation system. And since

the updated solution should not be radically different from the previous one, we furthermore just perform a limited number of195

Gauß-Seidel iterations, essentially exiting the algorithm before fully converged, arguing that an incomplete 3D solution should

still be better than a 1D solution neglecting all 3D effects – as we will also see later on in Sect. 4. And finally, updating the

outgoing radiative fluxes of any grid box within a Gauß-Seidel iteration just requires access to fluxes entering the exact same
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grid box, which facilitates model parallelization. Implemented into the method, incomplete dynamic TenStream solves with N

Gauß-Seidel iterations each would then be calculated in parallel within the different subdomains, with communication between200

these subdomains ideally taking place just once afterwards at the end of the radiation scheme call. In this case, the spread of

information would be limited to the scopes of the individual subdomains for every call of the radiation scheme.

2.2.3 Calculation of heating rates

In the end though, we are not just interested in calculating radiative fluxes, but especially in three-dimensional heating rates.

They quantify local changes in temperature with time due to sources and sinks of radiative energy in the atmosphere and can205

be calculated using the net irradiance divergence (Mayer, 2018):

∂T

∂t
=

1
ρ · cp

∇ ·E =
1

ρ · cp

(
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z

)
(3)

Here, T denotes temperature, t time, ρ air density, cp specific heat capacity of air at constant pressure and E net irradiance (in

units of W m−2) with components Ex, Ey and Ez when expressed in Cartesian coordinates. Applied to the TenStream fluxes

(in units of W) outlined in Sect. 2.1, we have to find expressions for the net flux in all three dimensions and then divide these210

by the area of the grid box surface they refer to. For the calculation of net fluxes we have to recall that TenStream features two

streams to describe the transport of diffuse radiation on each of its sides. Since these two streams describe the flux entering and

exiting a grid box in the upper and lower hemispheres, respectively, the total flux entering or exiting a grid box on one of its

sides is given by the sum of these two streams. The net flux in any of the three dimensions is thus given by adding up all diffuse

and direct fluxes entering the grid box in that dimension, minus those exiting it in the very same dimension. The heating rate215

of a grid box can thus be expressed as

(
∆T
∆t

)

i,j,k

=
1

ρ · cp

[
1

∆x
· 1

∆y ·∆z

(
5∑

m=2

(Φin,m,i,j,k −Φout,m,i,j,k)

︸ ︷︷ ︸
net diffuse radiative flux

in x direction

+ (Φin,11,i,j,k −Φout,11,i,j,k)

︸ ︷︷ ︸
net direct radiative flux

in x direction

)

+
1

∆y
· 1

∆x ·∆z

(
9∑

m=6

(Φin,m,i,j,k −Φout,m,i,j,k)

︸ ︷︷ ︸
net diffuse radiative flux

in y direction

+ (Φin,12,i,j,k −Φout,12,i,j,k)

︸ ︷︷ ︸
net direct radiative flux

in y direction

)

+
1

∆z
· 1

∆x ·∆y

(
1∑

m=0

(Φin,m,i,j,k −Φout,m,i,j,k)

︸ ︷︷ ︸
net diffuse radiative flux

in z direction

+ (Φin,10,i,j,k −Φout,10,i,j,k)

︸ ︷︷ ︸
net direct radiative flux

in z direction

)]

=
1

ρ · cp
· 1

∆x ·∆y ·∆z ·
12∑

m=0

(Φin,m,i,j,k −Φout,m,i,j,k) (4)220

with ∆x, ∆y and ∆z quantifying the size of the grid box. However, this formula raises some problems in combination with the

incomplete solves introduced in Sect. 2.2.2. To explain this, we can once more look at Fig. 3. While for example fluxes exiting
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the upper-left grid box are updated in the very first step, the diffuse flux entering that exact same grid box from the bottom is

updated much later in the fourth step. Hence, when the whole Gauß-Seidel iteration is completed, the fluxes exiting a certain

grid box do not necessarily match the ones entering it anymore, i.e. the fluxes are not consistent anymore. This can lead to225

heating rates that are unphysically large or negative in the solar spectral range. To avoid this problem, we have to rephrase the

outgoing fluxes in Eq. (4) in terms of ingoing fluxes, as it is given by the equations in Eq. (1):
(

∆T
∆t

)

i,j,k

=
1

ρ · cp
· 1

∆x ·∆y ·∆z ·
12∑

m=0

(
Φin,m,i,j,k −

12∑

n=0

tmn,i,j,k ·Φin,n,i,j,k −Bm,i,j,k

)
(5)

Since this expression incorporates the radiative transfer throughout the corresponding grid cell, it ensures that all fluxes involved

in the calculation of the heating rate are consistent with each other and thus provides physically correct three-dimensional230

heating rates.

3 Evaluation method

The dynamic TenStream solver outlined in Sect. 2 was implemented into the libRadtran library for radiative transfer (Emde

et al., 2016; Mayer and Kylling, 2005), which allows for testing the performance of the new solver with respect to other solvers

using an otherwise identical framework. Using this environment, our goal is to demonstrate that the new dynamic TenStream235

solver produces more accurate results than 1D independent column solvers employed nowadays while still being noticeably

faster than typical 3D solvers. Therefore, this section will first introduce our test setup as well as the solvers we compare

dynamic TenStream with. Then, we will explain how we determine its performance both in terms of speed and accuracy. Since

3D solvers are computationally much more demanding than 1D solvers, a special emphasis in this analysis will also be put

on the calling frequency of the radiative transfer calculations in order to elaborate whether our new solver is still performing240

better when operated with a similar computational demand as current 1D solvers.

3.1 Cloud and model setup

Our test setup is centered around a shallow cumulus cloud time series prepared by Jakub and Gregor (2022), which was

computed using the University of California, Los Angeles (UCLA) large eddy simulation (LES) model (Stevens et al., 2005).

The data set originally features both a high temporal resolution of 10 s and a high spatial resolution of 25 m in the horizontal.245

It is 6 h long and is characterized by a continuously increasing cloud fraction, starting with a clear sky situation and ending up

with a completely overcast sky. In addition, a southerly wind at a speed between 3 m s−1 and 4.7 m s−1 transports the clouds

through the domain (Gregor et al., 2023).

We have chosen this data set for two reasons: First, the high temporal resolution allows us to investigate the effect of

incomplete solves in the dynamic TenStream solver with regard to the calling frequency of the solver. As we outlined in Sect.250

2.2.2, we expect these incomplete solves to perform best if the cloud field mainly determining the radiative field does not change

much in between two radiation time steps. Due to the high temporal resolution, we can investigate how well the incomplete

solves perform if we call the solver less often by comparing runs with low calling frequencies to runs with the highest possible
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calling frequency of 10 s. On the other hand, we need the high spatial resolution of the data since our solver does not yet take

sub-grid scale cloud variability into account. However, we may not need a horizontal resolution of 25 m for that. Thus, to test255

the new solver on a resolution that is closer to that of operational weather models without having to account for sub-grid scale

cloud variability, we decided to reduce the horizontal resolution of the cloud fields to 100 m. To avoid problems with artificially

low liquid water content (LWC) at cloud edges when averaging the cloud field to that resolution, we constructed these lower

resolved cloud fields by simply using the data of just every fourth grid box in both horizontal dimensions. The resulting time

series still features a temporal resolution of 10 s, but the cloud data grid is reduced to 64× 64 grid boxes with a resolution of260

100 m in the horizontal. In the vertical, the modified cloud data set consists of 220 layers with a constant height of 25 m. This

way, the shape of the grid boxes is also closer to the one in NWP models, with their horizontal extent being larger than their

vertical extent.

For our test setup, we focus on the 100 time steps between 8000 s and 9000 s into the simulation, where the shallow cumulus

cloud field has already formed, but not yet reached a very high cloud fraction, as both a clear sky as well as completely overcast265

sky are not beneficial for 3D cloud-radiative effects. Figure 4 shows the modified cloud field for the very first time step in this

time frame. Especially looking at the vertically integrated liquid water content in panel (b), one can see that our reduced

horizontal resolution of 100 m allows us to still resolve the structure of the clouds.

Apart from the cloud field, the 1976 US standard atmosphere (Anderson et al., 1986) interpolated onto the vertical layers

given by the cloud data grid serves as background atmosphere. Above the cloud data grid, the native US standard atmosphere270

levels as they are provided by libRadtran are used. Both in the solar and the thermal spectral range, the simulations are carried

out using the molecular absorption parameterization by Fu and Liou (1992, 1993). In the solar spectral range, the Sun is placed

at a constant zenith angle of 50◦ and in the east. The zenith angle was chosen to be quite low so that 3D effects such as

cloud side illumination and shadow displacement are more pronounced, representing a typical morning scene. Furthermore,

the surface albedo in the solar spectral range is set to 0.125, resembling the global mean value of Trenberth et al. (2009),275

whereas the ground emissivity was set to 0.95 in the thermal spectral range.

3.2 Overview of the radiative transfer solvers

We apply four different radiative transfer solvers onto the aforementioned shallow cumulus cloud time series: the newly de-

veloped dynamic TenStream solver, the original TenStream solver, a classic one-dimensional δ-Eddington solver and a fully

three-dimensional Monte Carlo solver.280

Let us discuss the setup of the dynamic TenStream solver first. As we outlined in Sect. 2.2.2, it has to be provided with a first

guess the very first time it is called due to the unavailability of a previously calculated result at this point in time. To evaluate the

performance of the new solver, it is a good idea to use the best possible solution for this first guess. This way, one can examine

whether from there on the results obtained using the new solver featuring incomplete solves diverge from those retrieved by

the original TenStream solver using full solves. Hence, we initially perform 2,000 iterations for the clear sky spin-up described285

in Sect. 2.2.2 followed by N0 = 500 Gauß-Seidel iterations also involving the cloud field to ensure that the radiative field is

fully converged in the beginning of the time series. These two steps are visualized by the spin-up and arrow with the first N0
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Figure 4. First time step of the shallow cumulus cloud field used in the evaluation. Panel (a) shows a 3D visualization of the liquid water

content in the cloud field, whereas panels (b) and (c) display the vertically and horizontally integrated liquid water content for the same cloud

field, respectively.

Gauß-Seidel iterations in Fig. 2. We do not use a full original TenStream solve for this spin-up, as we do not want to rely on

numerical methods provided by PETSc in our new solver. From there on, we just use a minimum of two Gauß-Seidel iterations

every time the solver is called. Two instead of just one iteration ensures that the iteration direction mentioned in Sect. 2.2.2 is290

at least altered once per call. This way, we guarantee that information is not preferably transported in one specific direction.

Since the dynamic TenStream solver is based on the original TenStream solver, reproducing its results despite applying

incomplete solves is the best outcome that we can expect. Thus, the original TenStream solver (Jakub and Mayer, 2015) serves

as a best-case benchmark for our new solver. On the other hand, our goal is to significantly outperform currently employed

one-dimensional independent column approximations. Consequently, the δ-Eddington solver incorporated in the libRadtran295

radiative transfer library serves as a worst-case benchmark for our new solver that we should definitely surpass.

Finally, we also applied the 3D Monte Carlo solver MYSTIC (Mayer, 2009) onto the shallow cumulus cloud time series.

When operated with a large enough number of photons, it allows to determine the most accurate three-dimensional heating

rates possible. Hence, these results can be used as a benchmark for all the other solvers. For our MYSTIC simulations, we used

a total of 400,000,000 photons for every time step – that is about 100,000 per vertical column, resulting in domain-average300

mean absolute errors in both heating rates and irradiances that are not larger than 1 % of their respective domain averages.

12

https://doi.org/10.5194/egusphere-2023-2129
Preprint. Discussion started: 13 October 2023
c© Author(s) 2023. CC BY 4.0 License.



3.3 Speed and accuracy evaluation

As we mentioned earlier, our goal is to evaluate the performance of our new solver both in terms of speed and accuracy. How-

ever, especially determining the speed of a solver with respect to others is not a straightforward task, as it is highly dependent

on the environment the code is executed in. Since the dynamic TenStream solver is still in an early stage of development305

and this work is primarily focused on demonstrating the feasibility of the main concepts of the solver, we wanted to keep the

speed analysis as simple as possible. We decided to perform three radiative transfer computations for each of the previously

mentioned solvers on the same workstation for the very first cloud field in our time series. The average of these three run times

for every solver should at least provide a rough estimate of the relative speed of the different solvers to each other. All calcu-

lations were performed on a single core. We compare the computational time of incomplete dynamic TenStream solves with310

two Gauß-Seidel iterations per call, which is the same set-up as for the investigation of the performance of the new solver later

on, to run times of full solves by the 1D δ-Eddington solver, the original TenStream solver and MYSTIC. This comparison is

not entirely fair for the original TenStream solver though, as this solver can be run in a time-stepping scheme as well and thus

rely on previously calculated results, noticeably increasing its speed compared to calculations from scratch that we are using.

However, this time-stepping option for the original TenStream solver is not available within libRadtran right now.315

To assess the accuracy of the new solver, we study the entire time series. We focus our analysis on how well the solvers

perform in determining three-dimensional heating rates and net surface irradiances, as these two quantities determine sources

and sinks of radiative energy in the atmosphere and thus drive the weather. As mentioned in Sect. 3.2, values derived by

MYSTIC serve as benchmark values. We evaluate the performance of the other three solvers compared to MYSTIC using two

different error measures: a mean absolute error (MAE) and a mean bias error (MBE). The mean absolute error describes the320

amount by which the heating rate or net surface irradiance of an individual grid box on average deviates from the benchmark

solution:

MAE =
〈∣∣ξ− ξref

∣∣
〉

with ξ ∈
{(

∆T
∆t

)

i,j,k

;∆Enet,i,j,sfc

}
(6)

and ∆Enet,i,j,sfc = (S0,i,j,0 + Φ1,i,j,0−Φ0,i,j,0) ·∆x ·∆y

In here, 〈...〉 denotes a spatial average, whereas the subscript "ref" refers to a reference value, i.e. the MYSTIC values in our325

case. Since the mean absolute error is sensitive to how the values of an individual grid box deviate from the benchmark solution,

it is a measure of whether a solver gets the overall heating rate or net surface irradiance pattern right. It is sensitive to double-

penalty errors, i.e. gets large when local minimums and maximums in this pattern are displaced between the benchmark solution

and the investigated solver. We have chosen an absolute error measure rather than a relative one here, because individual heating

rates or net surface irradiances can be close to zero and thus blow up a relative error measure. The mean bias error on the other330

hand is an error measure targeted towards the domain mean heating rate or net surface irradiance:

MBE = 〈ξ〉− 〈ξref〉 with ξ ∈
{(

∆T
∆t

)

i,j,k

;∆Enet,i,j,sfc

}
(7)
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In contrast to the MAE, the MBE compares domain-average values to each other and is thus a measure for whether we get

the domain-average heating rate or net surface irradiance right. It is not sensitive to the spatial pattern of these quantities, but

rather tells us whether there is on average too much or too less absorption in the domain compared to the benchmark solution.335

Domain averages of heating rates and net surface irradiances are usually not close to zero, so that we can also take a look at

the relative error measure here:

RMBE =
〈ξ〉− 〈ξref〉
〈ξref〉

with ξ ∈
{(

∆T
∆t

)

i,j,k

;∆Enet,i,j,sfc

}
(8)

Applied to the shallow cumulus cloud time series at its full temporal resolution of 10 s, these two error measures allow us to

determine the accuracy of the dynamic TenStream, original TenStream and δ-Eddington calculations compared to the MYSTIC340

benchmark run at any point in time. We can also ensure that the benchmark solution itself has a significantly smaller error than

the other solvers when compared to this benchmark. Therefore, we use the standard deviation σref that can be determined

for every single MYSTIC value. However, this standard deviation describes the mean squared deviation of a MYSTIC value

from its mean, whereas the MAE that we are using is looking at the mean absolute deviation. For normally distributed random

variables, however, the mean absolute deviation is simply given by345

MAD =

√
2
π
·σ (9)

with σ being the standard deviation (Geary, 1935). We can assume that the benchmark run is of sufficient quality if this MAD

of the MYSTIC values is much smaller than the corresponding mean absolute deviations between MYSTIC and the values

of the other solvers. Hence, we can use the domain-average MAD of the benchmark solution to quantify the domain-average

MAE of the benchmark solution at any point in time:350

MAEref =
〈√ 2

π
·σref

〉
(10)

We cannot provide a number for the MBE of the benchmark solution, though, as we only know how much the individual

MYSTIC values are scattered around their mean, but not whether this mean has an inherent bias. Hence, we simply have to

assume that our benchmark simulation is unbiased.

So far, this evaluation would only tell us the accuracy of the different solvers compared to the benchmark run when operated355

at the same, highest possible calling frequency of 10 s. However, radiation is usually called far less often than the dynamical

core of the model. Also, 3D radiative transfer solvers are computationally much more demanding than 1D solvers, raising the

question of how good our new solver performs when operated with a similar computational demand as the 1D δ-Eddington

solver. To address these questions, we also investigate the effect of the radiation calling frequency on the temporal evolution of

the aforementioned error measures.360

In order to explain our approach to this, we take a look at Fig. 5. It demonstrates how we determine the aforementioned

error measures for a solver operated at a lower calling frequency of 30 s with respect to the MYSTIC benchmark run, that

is computed at the highest possible calling frequency of 10 s. At t = 8020 s, that is 20 s into our time series, these error

14

https://doi.org/10.5194/egusphere-2023-2129
Preprint. Discussion started: 13 October 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 5. Schematic illustration of how we determine the error of a solver operated at a lower calling frequency of ∆trad = 30s compared

to the benchmark solution computed at the highest possible calling frequency of ∆trad = 10s at any point in time. To this end, the circles in

the figure indicate the results of the corresponding solvers at any given time, with the colors symbolizing the time step at which these results

have been calculated and the dotted circles in contrast to the full circles indicating results that have not been updated at that point in time.

The color of these dotted circles is thus equal to that of the corresponding last full circle.

measures are given by comparing the not yet updated solution that has been originally calculated at t = 8000 s to the values

of the benchmark solution obtained at exactly t = 8020 s. This way, we can investigate how the error metrics of a not updated365

radiative field grow until it is eventually updated again. This investigation is particularly important for our new solver, as it just

performs incomplete solves every time it is called. As we expect these to work best if the overall properties determining the

radiative field have not changed much in between two calls of the solver, this method allows us to investigate whether our new

solver still converges towards the results of the original TenStream solver when operated at lower calling frequencies. For this

paper, we decided to take calling frequencies of 10 s, 30 s and 60 s into account. These calling frequencies are still very high370

for operational weather forecasts, where the radiation time step is typically around one hour (Hogan and Bozzo, 2018), but we

have to consider that our cloud field also features a significantly higher spatial resolution of 100 m in the horizontal compared

to 2.2 km in the DWD ICON-D2 model (DWD, 2023) and 9 km in the ECMWF high-resolution deterministic forecasts (Hogan

and Bozzo, 2018). At the LES resolution of 100 m that we use for our evaluation, the Weather Research and Forecasting (WRF)

model for example recommends a radiation time step as high as 1 minute per kilometer of horizontal resolution (WRF, 2023),375

resulting in a suggested radiation time step of 6 s for our test case. Our highest calling frequency of 10 s is at least close to that

number, with the other two calling frequencies of 30 s and 60 s definitely representing scenarios where radiation is called less

often than recommended.
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4 Results and discussion

4.1 Solver speed380

Table 1. Computing time of the different solvers relative to those of the 1D δ-Eddington solver, taken as an average over three runs performed

on the same workstation for the very first time step of the LES cloud time series

solar spectral range thermal spectral range

δ-Eddington

1D two-stream solver

1.0 1.0

dynamic TenStream

incomplete 3D solver with two Gauß-Seidel iterations

3.6 2.6

original TenStream

full 3D solver

50.8 24.1

MYSTIC

full 3D benchmark solver using 400,000,000 photons

1068.9 1611.3

The relative speed of the different radiative transfer solvers introduced in Sect. 3.2 compared to the run time of the 1D δ-

Eddington solver is shown in Table 1. As we described in Sect. 3.3, all solvers for this test were executed on a single core of

the same workstation and therefore in a very similar environment. This workstation featured an Intel Xeon W-2245 CPU and

64 GB RAM, with the performance being primarily limited by the network storage where all the data has been stored. We can

see that in this experiment, the newly developed dynamic TenStream solver with two Gauß-Seidel iterations is 3.6 times slower385

than the 1D δ-Eddington solver in the solar spectral range and just 2.6 times slower in the thermal spectral range. Comparing

these numbers to the findings in Jakub and Mayer (2016), they are in line with what we could have expected in terms of the

speed of the new solver: According to this paper, retrieving the coefficients of the TenStream linear equation system from the

look-up tables in both the solar and thermal spectral range takes about as long as performing one δ-Eddington calculation. On

top of that, we have to calculate the fluxes for every grid box of the domain, just as in a δ-Eddington calculation. However,390

for the dynamic TenStream calculation, we have to determine fluxes for ten instead of two streams per grid box and calculate

all these fluxes twice as we perform two Gauß-Seidel iterations whenever the solver is called. And even though the number

of streams in particular will most likely not scale linearly with run time, we can thus certainly expect that the new solver is at

least twice as slow as a δ-Eddington solver with factors of 3.6 and 2.6 being on par with that.

Although the new solver is thus noticeably slower than a 1D solver, it is still significantly faster when compared to other 3D395

solvers executed under similar circumstances – namely the original TenStream and MYSTIC solvers in Table 1. The original

TenStream solver for example is at least 24 times slower in this experiment than the 1D δ-Eddington solver, with MYSTIC
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Figure 6. Temporal evolution of the mean absolute error in heating rates of the 1D δ-Eddington solver (blue lines), the original TenStream

solver (green dashed lines) and the newly developed dynamic TenStream solver (red dash-dotted lines) with respect to the MYSTIC bench-

mark run at calling frequencies of 10 s, 30 s and 60 s (different shades of the corresponding color) for both the solar (panel a) and thermal

(panel b) spectral range. Due to the statistical nature of Monte Carlo simulations, the MYSTIC benchmark run itself is subject to some

uncertainty. The corresponding MAE calculated using Eq. (10) is visualized by the dotted black line. For reasons of visual clarity, we show

only the first half of the time series here.

being even slower. As we pointed out earlier, this comparison is not entirely fair for the original TenStream solver though, as

it can also be run in a time-stepping scheme. Jakub and Mayer (2016) showed that in this case, the original TenStream solver

can only be up to a factor of 5 slower than 1D δ-Eddington solves, which however is still noticeably slower than the dynamic400

TenStream solver presented here.

4.2 Performance in determining heating rates

Next, let us have a look at how our new solver performs in calculating heating rates. As we mentioned in Sect. 3.3, we will

center this analysis around two different error measures: a mean absolute error and a mean bias error. Figure 6 shows the

temporal evolution of the MAE in heating rates for the different solvers at calling frequencies of 10 s, 30 s and 60 s when405

applied to the LES shallow cumulus cloud time series introduced in Sect. 3.1. At this point, we should recall that the mean

absolute error is a measure of how good a solver on average performs in determining the heating rate for a certain grid box.
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When operated at the highest possible calling frequency of 10 s, we can see the MAE is relatively constant in time for all the

solvers, as we compare radiative transfer calculations carried out at a certain point in time to benchmark calculations obtained

at the exact same time step. The MAE in this case is solely determined by the error made by the solvers themselves when410

applied to relatively similarly structured shallow cumulus clouds, so this behavior is expected. Looking at the magnitude of the

MAE for the different solvers, we can see that for both spectral regions, the δ-Eddington solver (dark blue line) performs worst,

whereas the 3D TenStream solver is a noticeable improvement. Pleasingly, the MAE of our dynamic TenStream solver at a

calling frequency of 10 s (dark red dash-dotted line) is almost on par with the error obtained with the original TenStream solver.

It is only in the thermal spectral range where its error is getting slightly larger with time. This shows that in this example, at a415

calling frequency of 10 s, just two Gauß-Seidel iterations per call are already sufficient to reproduce the results of the original

TenStream solver.

At lower calling frequencies, the radiative field is not updated at every time step of the cloud time series anymore. Conse-

quently, the MAE of the different solvers rises until the solver is called again. The resulting saw tooth structure can be observed

in the MAE time series of all the solvers at calling frequencies of 30 s and 60 s. In case of the traditional solvers, a full solve420

is performed every time they are called. Thus, the MAE at lower calling frequencies always reduces to the value obtained at

a calling frequency of 10 s when the corresponding solver is called. This is not necessarily true for the dynamic TenStream

solver, however, as it is just performing an incomplete solve involving two Gauß-Seidel iterations every time it is called. If this

incomplete solve would not be sufficient, it could lead to a divergent behavior of the MAE time series for this solver. Looking

closely, we can also see that for both lower calling frequencies, the MAE of the dynamic TenStream solver does not always425

match the errors obtained at a calling frequency of 10 s when updated. However, even at a calling frequency of 60 s, we cannot

observe a divergent behavior and the newly developed solver is able to almost perfectly reproduce the results of the original

TenStream solver whenever called.

Moreover, we have seen that our new solver is about three times slower than a traditional 1D δ-Eddington solver. Looking at

Fig. 6, we can now see that our new solver even performs better than the δ-Eddington solver at a calling frequency of 10 s (bold430

blue line) when it is operated at a calling frequency of 30 s (bold red dash-dotted line) and thus with a similar computational

demand as the 1D solver – both in the solar, as well as in the thermal spectral range.

Switching to the other error measure, Fig. 7 visualizes the temporal error evolution of the mean bias error for the different

solvers. In contrast to the MAE discussed before, this error metric describes whether we get the domain-average heating rate

right. As we can clearly see, the MBE is again largest for the 1D δ-Eddington solver and once more significantly smaller for435

the original TenStream solver. When operated at the highest possible calling frequency of 10 s, the mean bias error of our new

solver is also very similar to that of the original TenStream solver. However, at lower calling frequencies, we can clearly see

that the bias increases with time, although never getting larger than the bias of the 1D results. It is also clearly visible that

the bias is more negative than the original TenStream bias (green dashed lines) in the solar spectral range, whereas it is less

positive in the thermal spectral range. Since the domain-average heating rate in the solar spectral range is positive, this implies440

that our new solver underestimates absorption in this spectral range, especially compared to the original TenStream solver it is

based on. This underestimation is getting larger the less the dynamic TenStream solver is called. As the liquid water content
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Figure 7. Temporal evolution of the mean bias error in heating rates for the different solvers with respect to the MYSTIC benchmark run at

calling frequencies of 10 s, 30 s and 60 s for both the solar (panel a) and thermal (panel b) spectral range. A run with no bias is visualized by

the dotted black line.

in the domain gradually increases with time and more liquid water in the clouds leads to more absorption, this could imply

that the dynamic TenStream solver does not fully take this increase into account. This does not explain the behavior of the

new solver in the thermal spectral range, though, where domain-average heating rates are negative. Hence, the positive MBE445

values observed for both the original as well as the dynamic TenStream solver imply that the heating rates are not as negative

there as they should be. But in contrast to the solar spectral range, these heating rates get more negative the less the dynamic

TenStream solver is called, so that the dynamic TenStream solver overestimates thermal heating rates when compared to the

original TenStream solver it is based on. Using this and the results obtained from the MAE time series, we can draw a first few

conclusions:450

1. For an individual grid box, our new solver is able to determine heating rates much more accurately than current 1D

solvers, even when operated with a similar computational demand.

2. When looking at domain averages, the dynamic TenStream solver begins to develop a bias compared to the original

TenStream solver it is based on. This bias becomes larger the lower the calling frequency, but remains smaller than the

bias of the 1D δ-Eddington calculations at any point in time.455
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Figure 8. Temporal evolution of the mean absolute error in the net surface irradiance for the different solvers with respect to the MYSTIC

benchmark run at calling frequencies of 10 s, 30 s and 60 s for both the solar (panel a) and thermal (panel b) spectral range. The MAE of the

MYSTIC benchmark run itself is visualized by the dotted black line.

4.3 Performance in determining net surface irradiances

Besides heating rates, we are also interested in how well our new solver performs in determining net surface irradiances

and thus absorption at the ground. Figure 8 shows the temporal evolution of the mean absolute error for this quantity in an

otherwise similar fashion as Fig. 6 and Fig. 7. As for the heating rates, we can see that the 1D δ-Eddington solver (blue lines)

performs worst, with the original TenStream solver (green dashed lines) once more being a noticeable improvement, remaining460

significantly below the error of all 1D runs throughout the entire time series even at lower calling frequencies. Again, our

newly developed dynamic TenStream solver (red dash-dotted lines) is able to almost maintain the MAE of the full TenStream

calculations at the highest possible calling frequency of 10 s, whereas its error slightly increases with time for the two lower

calling frequencies. However, this slight divergence from the original TenStream MAE quickly stabilizes and also remains

significantly below every single δ-Eddington run even when just called every 60 s. What is interesting though is that the465

temporal evolution of the MAE in the thermal spectral range does not show a sawtooth structure at lower calling frequencies,

in contrast to all other plots involving the MAE so far. As we discussed earlier, this sawtooth structure is mainly caused by the

fact that at lower calling frequencies we do not update the radiative field for some time steps while the clouds are still moving
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Figure 9. Temporal evolution of the mean bias error in the net surface irradiance for the different solvers with respect to the MYSTIC

benchmark run at calling frequencies of 10 s, 30 s and 60 s for both the solar (panel a) and thermal (panel b) spectral range. A run with no

bias is indicated by the dotted black line.

through the domain, resulting in gradually increasing double-penalty errors. The fact that this behavior is not observed in the

thermal spectral range indicates that the net surface irradiance field does not feature small-scale structures that lead to a steadily470

increasing double-penalty error when clouds are moving, but the radiative field is not updated.

To conclude this analysis, let us once more also have a look at our other error measure, the mean bias error. Again, in contrast

to the MAE, this error measure does not tell us how well our new solver performs in determining the net surface irradiance for

a single grid box, but rather whether we get the domain-average surface absorption right. The corresponding plot is shown in

Fig. 9 and reveals a current weakness of both the original TenStream solver as well as our new solver, as we can clearly see that475

the MBE in the net surface irradiance is almost always larger for these two solvers than it is for the 1D δ-Eddington solver. And

as we have already seen in the results for the heating rates, the lower the calling frequency, the more the MBE of the dynamic

TenStream solver diverges from the MBE of the original TenStream solver. Here, however, this behavior is more severe than

it was for the heating rates, since already the benchmark for our new solver – the original TenStream solver – performs a bit

worse than the 1D solver. Its MBE of about−2.5 W m−2 in the solar and 5 W m−2 in the thermal spectral range translates to a480

RMBE of about −0.5% and −6%, respectively (not shown here), compared to numbers of around 0 W m−2 (0%) in the solar

and −4 W m−2 (5%) in the thermal spectral range for the δ-Eddington solver. Similar to the heating rates, surface absorption
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in the solar spectral range is underestimated by the dynamic TenStream solver even more than by the original TenStream solver,

with the effect increasing the less frequently the new solver is called. Especially looking at the runs with calling frequencies

of 10 s and 30 s, one can however clearly see that this divergence from the original TenStream MBE quickly stabilizes itself485

at values around −5 W m−2 (−1%) and −12 W m−2 (−2%), indicating that the bias will not grow continuously. The same

behavior can be observed in the thermal spectral range, only that, similar to the behavior in the heating rates, the build-up of the

bias compared to the original TenStream solver actually improves the MBE of the new solver at lower calling frequencies there.

Since net surface irradiances in the thermal spectral range are negative, the positive MBE values for the original TenStream in

Fig. 9 indicate an underestimation, i.e. not negative enough values, in the net surface irradiance, with the dynamic TenStream490

solver counteracting this bias the less often it is called – although this is, of course, more of a coincidence. Similar to the

heating rates, we can thus conclude:

1. On the grid box level, our solver determines far better net surface irradiances than current 1D solvers, even when operated

at much lower calling frequencies.

2. Looking at domain-average values, the incomplete solves within the dynamic TenStream solver lead to the build-up of a495

bias compared to the original TenStream solver. This bias becomes larger the lower the calling frequency. However, this

bias is already larger than for the 1D simulations in the native TenStream solver our new solver is based on.

4.4 Visualization of dynamic TenStream heating rate fields

We want to conclude our evaluation by visually comparing the dynamic TenStream results to those calculated by the other

solvers introduced in Sect. 3.2. A special focus of this comparison will also be on how well our new solver visually performs in500

updating the radiative field depending on the calling frequency. To make this comparison as hard as possible for our new solver,

we decided to look at the last time step where the radiative field is simultaneously updated for all three calling frequencies that

we consider: that is at t = 8960 s. Instead of this point in time, we could of course also take a look at a point in time where

the different dynamic TenStream solves have just not been updated. By doing so, one would focus more on how good not yet

updated radiative fields still resemble the benchmark result. In here, however, we want to focus more on how well our new505

solver performs in updating the radiative field depending on how much it has changed before the radiation scheme was called

again. From this point of view, t = 8960 s is the last point in time where all three dynamic TenStream runs have just been

updated. Hence, they are subject to the most incomplete solves and furthest away from the initial spin-up there, enlarging the

chance for potential artifacts in the radiative field due to not fully solving the TenStream linear equation system for quite a

while.510

Figure 10 shows xz cross sections for this point in time for the solar spectral range, with the colors indicating the heating

rates along the cross section using a logarithmic color scale – except for the lowermost row in all the panels, which visualizes

the net surface irradiance. In general, the bright yellow areas with correspondingly large heating rates indicate the position of

clouds, while the dark areas signify shadows below the clouds. Right from the start we can see that the largest visual differences

do not occur in between the different incomplete dynamic TenStream solves, but between the 1D δ-Eddington solver in panel515
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Figure 10. xz cross section of the heating rate fields obtained by the different RT solvers in the solar spectral range at t = 8960 s. Heating

rates are visualized by a logarithmic color scale for the δ-Eddington (panel a), original TenStream (panel b) and MYSTIC (panel c) solver, as

well as for the dynamic TenStream solver when operated at calling frequencies of 10 s (panel d), 30 s (panel e) or 60 s (panel f). Additionally,

the horizontal line at the bottom in all the plots visualizes the corresponding net surface irradiances obtained by the solvers.

(a) and the 3D solvers in panels (b)–(f). As 1D radiation does not allow for horizontal transport of energy, shadows in panel

(a) cannot be cast according to the angle of solar incidence, but just right underneath the clouds. This also affects absorption

at the ground, with regions of low surface absorption located right below the clouds, rather than displaced like in the MYSTIC

benchmark run. We can see that the visual structure of this benchmark result is much better resembled by the TenStream solver

shown in panel (b). Clouds here are also illuminated at their sides and horizontal transport of energy allows for shadows being520

cast in the direction of the solar incidence angle. However, we can see that both these shadows and regions of low surface

absorption are much more diffuse than in the MYSTIC benchmark run – although they are still a much better representation of

the benchmark than the 1D solution.

Having these characteristics in mind, we can now discuss the results for the new dynamic TenStream solver, that are shown in

the last row of Fig. 10. The three panels show the results for the new solver if it has been called every 10 s (panel d), 30 s (panel525

e) or 60 s (panel f) before. At first glance, we can see that the new solver almost perfectly matches the results obtained by the

original TenStream solver in panel (b), even when operated at the low calling frequency of 60 s. Remember that in this run just

two Gauß-Seidel iterations towards convergence were carried out at only (8960 - 8000) / 60 = 16 points in time since the spin-

up. Since our solver is based on the TenStream solver, this is almost the best result we could have gotten. We can see that just
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Figure 11. xz cross section of the heating rate fields obtained by the different RT solvers in the thermal spectral range at t = 8960 s. The

structure of the plot is identical to Fig. 10, only that the color scale is logarithmic for heating rates both above 1 K d−1 and below –1 K d−1

and linear in between.

like the TenStream solver, our new solver allows for full three-dimensional transport of energy, with shadows and regions of530

low surface absorption being cast not just directly underneath clouds. Looking closely, one can however indeed see differences

between the results obtained at different calling frequencies. Panel (d) showing the results for a calling frequency of 10 s most

accurately resembles the original TenStream result, which becomes most visible within the shadows cast by the clouds on the

right-hand side of the domain. They are overestimated by both lower calling frequency runs in between about 5 and 6 km in

x-direction, with heating rates being too low there compared to the original TenStream result. Also, surface absorption differs535

quite a bit in between the different dynamic TenStream runs. The structure obtained by the original TenStream solver is again

most accurately resembled by the dynamic TenStream run with a calling frequency of 10 s, whereas the surface absorption is

overestimated a bit around 5 km in x-direction in the 30 s run and featuring a much more pronounced region of high absorption

at around 2 km in the 60 s run.

Before making a closing statement, let us also have a look at the results in the thermal spectral range. As heating rates have540

both positive, as well as negative values there, we decided to plot them using a symmetric logarithmic color scale, which shows

heating rates both below -1 K d−1 and above 1 K d−1 using a logarithmic scale, while taking a linear scale for the values in

between into account. The corresponding plot, which is otherwise constructed in a very similar fashion as the previous plot,

is shown in Fig. 11. Again, we can see that the result for the 1D δ-Eddington solver in panel (a) features the most differences
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when compared to all the other panels showing results obtained by 3D solvers. Compared to the MYSTIC benchmark run,545

we can see that thermal shadows cast by the clouds are much more pronounced in 1D and not weakened in direction of the

ground due to interaction with neighboring columns. This also leads to a very distinct pattern of strongly negative and not so

negative net surface irradiance areas at the ground in the 1D results, whereas surface emission is almost uniform in the MYSTIC

benchmark result. This also provides proof to our observation in Sect. 4.3, where we have noted that the benchmark results for

the net surface irradiance in the thermal spectral range should be pretty uniform in order to avoid the sawtooth pattern in the550

MAE time series that we typically saw when evaluating solvers at lower calling frequencies. Furthermore, we can also see that

the 1D δ-Eddington solver is not able to consider cloud-side cooling due to its lack of horizontal transport of energy, leading

to a much more pronounced cloud bottom warming in the 1D results than in the MYSTIC benchmark. The original TenStream

solver depicted in panel (b) is able to consider almost all of these 3D effects and is therefore once more visually pretty close

to the MYSTIC result. Looking closely, we can however see that the thermal shadows are a bit more pronounced there, which555

also leads to regions of a bit weaker net surface irradiance below the clouds in contrast to the very uniform pattern produced

by the MYSTIC benchmark solver.

Comparing these results to those of our newly developed dynamic TenStream solver, we can see that also in the thermal

spectral range, it is able to almost perfectly reproduce the results of the original TenStream solver, even when operated at lower

calling frequencies. However, the result obtained with a calling frequency of 10 s shown in panel (d) clearly resembles the560

original TenStream result most closely. At lower calling frequencies, we can see small artifacts, most noticeably in the form

of larger or completely floating thermal shadows (the white areas in the plots) that do not seem to belong to any cloud at

all, while they are normally placed directly underneath them. These regions are residual shadows of already dissolved clouds,

which the incomplete solves where not able to get rid of yet. Evidence for this thesis is provided by looking at the same plot at

previous time steps (not shown here). These residual shadows also influence the net surface irradiance pattern, which is most565

prominently visible in between 1 and 2 km in panel (f). In total, these residual shadows are pretty minor artifacts, though, as we

have to consider that we were only able to visualize them by using a logarithmic color scale. And we also have to keep in mind

that especially panel (e) showing the results at a calling frequency of 30 s has been obtained using a similar computational

demand like performing 1D δ-Eddington calculations every 10 s. In contrast to these results, however, the dynamic TenStream

result features full three-dimensional radiative transport, resulting in much more realistically distributed heating rates and net570

surface irradiance patterns.

In summary, we can hence say that for both the solar and the thermal spectral range, our new solver is almost perfectly able

to visually reproduce the results obtained by the original TenStream solver, even when operated at lower calling frequencies. At

those, however, minor artifacts like residual shadows are introduced. The reason for these artifacts are the incomplete solves,

which can delay lower-order 3D effects, such as feedback effects from other clouds or the surface. For example, incomplete575

solves can perfectly consider three-dimensional radiative effects of an emerging cloud at the location of the cloud itself, but the

feedback on these heating rates due to lower upward facing radiative fluxes from the shadow this cloud casts may be delayed to

a later call of the scheme, if the two Gauß-Seidel iterations that we perform per call are not enough to transport this feedback

back to the cloud itself.
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5 Summary and outlook580

Based upon the TenStream solver, we presented a new radiative transfer model that allows us to calculate 3D radiative fluxes

and heating rates at a significantly increased speed by utilizing two main concepts that both rely on the idea that the radiative

field is not likely to totally change in between two calls of the scheme: First, radiation in this method is not solved from scratch

every time it is called, but rather uses a time-stepping scheme to update the radiative field based on the result from the previous

radiation time step. Secondly, the model is based on incomplete solves, performing just a few Gauß-Seidel iterations towards585

convergence every time it is called.

To demonstrate the feasibility of the dynamic TenStream solver incorporating these two concepts, we implemented it into

the libRadtran library for radiative transfer and applied it onto 100 time steps of a shallow cumulus cloud time series prepared

by Jakub and Gregor (2022). Its high temporal resolution of 10 s allowed us to investigate the effect of the calling frequency

on the performance of our new solver by comparing results obtained at this high calling frequency to those retrieved at lower590

calling frequencies, where the radiative field changes more noticeably in between two time steps. Four different solvers were

applied to this time series: Besides our newly developed dynamic TenStream solver, a traditional 1D δ-Eddington solver was

used as a worst-case benchmark that we should definitely surpass, whereas the original TenStream solver served as a best-case

benchmark for our new solver – since it is based on the TenStream solver, retrieving the exact same results while relying on

incomplete solves would have been the best outcome that we could have expected. Simulations performed by the 3D Monte595

Carlo solver MYSTIC furthermore served as benchmark results for all the solvers, essentially providing a ground truth.

Using these results, we evaluated the performance of our new solver in determining heating rates and net surface irradiances

both in terms of speed and accuracy. In terms of speed, we saw that our newly developed dynamic TenStream solver is about

three times slower than a traditional 1D δ-Eddington solver, but delivers a noticeable increase in performance when compared

to the other two 3D solvers, which are at least a factor of 5 slower. To evaluate the accuracy of the aforementioned solvers600

with respect to the MYSTIC benchmark run, we used two different error measures: While a mean absolute error allowed us

to investigate the average error a certain solver makes for an individual grid box, a mean bias error allowed us to investigate

whether the domain-average results of a certain solver deviate from the domain-average benchmark results. In terms of heating

rates, we saw that our new solver is almost perfectly able to reproduce the results of the original TenStream solver, even

when operated at lower calling frequencies. At these lower calling frequencies, we observed that our incomplete solves lead605

to the build-up of a bias that is the larger the lower the calling frequency is. However, even at the lowest calling frequency

investigated, this build-up stabilized itself at some point and remained lower than the bias of any 1D run in any point in time.

More importantly, dynamic TenStream results were better in terms of both error measures when compared to 1D simulations

carried out with a similar computational demand. Finally, we also saw that mean absolute errors in the net surface irradiance

were significantly lower than the corresponding 1D errors even when operated at lower calling frequencies. Only the bias in the610

net surface irradiances was larger than in the 1D simulations at any point in time. However, this bias could already be observed

in the original TenStream results and was thus not expected to be improved by applying incomplete solves.
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Overall, thus, the results of this test case clearly demonstrated the capabilities of our new solver. Using a first example,

we were able to show that the introduction of a time-stepping scheme and the application of incomplete solves are able to

retrieve both heating rates and net surface irradiances that are much closer to the 3D benchmark results than to currently615

employed 1D solvers, even when operated with a similar computational demand. These results become even more interesting

when we consider recent developments in the field of another major computational bottleneck in radiative transfer calculations,

namely the number of spectral bands required to calculate accurate integrated longwave and shortwave heating rates. In our

evaluation, we used the wavelength parameterization by Fu and Liou (1992, 1993) that features a total of 54 and 67 spectral

bands in the solar and thermal spectral range, respectively (Oreopoulos et al., 2012). That is already a pretty low number of620

spectral bands considering that most models currently use the newer and more precise RRTMg parameterization (Mlawer et al.,

1997; AER, 2023), that even takes a total of 112 and 140 spectral bands in the solar and thermal spectral range into account,

respectively. However, recent developments showed that these numbers can be dramatically reduced without a significant

loss in precision in the calculation of both radiative fluxes and heating rates. de Mourgues et al. (2023) for example showed

that in the thermal spectral range, even 30 spectral bands are sufficient to almost perfectly reproduce heating rates obtained625

by a line-by-line calculation. Compared to RRTMg this is more than four times less the number of spectral bands. Similar

results have been obtained by Hogan and Matricardi (2022), who showed that just 32 spectral bands in both the solar and the

thermal spectral range are able to produce very accurate irradiances and heating rates, with more spectral bands adding little

to no further precision. These more efficient spectral parameterizations, together with the speed improvements achieved with

the dynamic TenStream solver, would allow to accelerate 3D radiative transfer towards the speed of currently employed 1D630

solvers, potentially for the first time ever allowing the use of 3D radiative transfer in NWP models.

Before this vision becomes reality, however, our newly developed solver needs more work. First of all, further performance

tests should include multiple layer cloud fields – e.g. shallow cumulus clouds with cirrus clouds above – as well as deep

convective clouds to investigate whether two Gauß-Seidel iterations per call as used in this paper are still sufficient under these

circumstances, as more complex cloud fields involve more radiative interaction in the vertical. Earlier simulations carried out635

with the dynamic TenStream solver have shown that incomplete solves can lead to "ping-pong" effects in these cases, where

distant grid boxes update radiative influences on each other back and forth in between different dynamic TenStream calls. These

"ping-pong" effects were vastly reduced due to the use of the Gauß-Seidel method, but it will be interesting to see whether

vertically more complex cloud fields pose a greater challenge to our solver. In addition, the derivation of a rule on how many

Gauß-Seidel iterations to use depending on the model setup to ensure reliable results is another main future target. Finally, we640

will certainly need to consider subgrid-scale processes and parallelize the solver before it can be finally used in NWP models.

As in the development of this new solver, we can build upon the original TenStream solver for that, as this solver is already

fully parallelized (Jakub and Mayer, 2015) and can be interactively coupled to LES models (Jakub and Mayer, 2016). Using the

native TenStream framework is especially suitable for these purposes since the main features of the new dynamic TenStream

solver have been included as options for the native TenStream solver in the meantime. Among these features are the ability to645

perform a limited number of iterations per call, the correct calculation of 3D heating rates to avoid unphysically large heating

27

https://doi.org/10.5194/egusphere-2023-2129
Preprint. Discussion started: 13 October 2023
c© Author(s) 2023. CC BY 4.0 License.



rates in this case, as well as the speed-up in convergence by properly iterating through the TenStream linear equation system,

following e.g. the direction of solar incidence for direct solar radiation, just to name a few.

Code and data availability. The newly developed dynamic TenStream solver presented in this paper was developed as part of the libRadtran

library for radiative transfer (Emde et al., 2016), which can be downloaded from www.libradtran.org. The new solver will be included in650

version 2.0.6 of this library, which is scheduled for a late 2023 release. In case later versions have been released in the meantime, version

2.0.6 can still be accessed via http://www.libradtran.org/download/history/. The libRadtran user manual can be found in the "doc" folder of

the library. The shallow cumulus cloud time series used to evaluate the performance of the new solver has been published by Jakub and

Gregor (2022), with the modifications and methods applied to it to reproduce the results of Sect. 4 described in Sect. 3 of this paper.
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